Nanoscale architecture of the Schizosaccharomyces pombe contractile ring

نویسندگان

  • Nathan A McDonald
  • Abigail L Lind
  • Sarah E Smith
  • Rong Li
  • Kathleen L Gould
چکیده

The contractile ring is a complex molecular apparatus which physically divides many eukaryotic cells. Despite knowledge of its protein composition, the molecular architecture of the ring is not known. Here we have applied super-resolution microscopy and FRET to determine the nanoscale spatial organization of Schizosaccharomyces pombe contractile ring components relative to the plasma membrane. Similar to other membrane-tethered actin structures, we find proteins localize in specific layers relative to the membrane. The most membrane-proximal layer (0-80 nm) is composed of membrane-binding scaffolds, formin, and the tail of the essential myosin-II. An intermediate layer (80-160 nm) consists of a network of cytokinesis accessory proteins as well as multiple signaling components which influence cell division. Farthest from the membrane (160-350 nm) we find F-actin, the motor domains of myosins, and a major F-actin crosslinker. Circumferentially within the ring, multiple proteins proximal to the membrane form clusters of different sizes, while components farther from the membrane are uniformly distributed. This comprehensive organizational map provides a framework for understanding contractile ring function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytokinesis and the contractile ring in fission yeast.

The fission yeast Schizosaccharomyces pombe provides a genetic model system for the study of cytokinesis. As in many eukaryotes, cell division in the fission yeast requires an actin-myosin-based contractile ring. Numerous components of the contractile ring that function in ring assembly, positioning and contraction have been characterized. Many of these proteins are evolutionarily conserved, su...

متن کامل

The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis

The fission yeast Schizosaccharomyces pombe divides by medial fission and, like many higher eukaryotic cells, requires the function of an F-actin contractile ring for cytokinesis. In S. pombe, a class of cdc- mutants defective for cytokinesis, but not for DNA replication, mitosis, or septum synthesis, have been identified. In this paper, we present the characterization of one of these mutants, ...

متن کامل

Anillin

Are there homologues outside of metazoa? In the fission yeast Schizosaccharomyces pombe there are two anillin-like proteins, Mid1p and Mid2p, which have nonoverlapping functions. Mid1p is a key regulator of cytokinesis, orchestrating contractile ring positioning and assembly. Mid2p has a less essential role, acting later in cytokinesis to organize septins during septation. Budding yeast (Saccha...

متن کامل

The SH3 domains of two PCH family members cooperate in assembly of the Schizosaccharomyces pombe contractile ring

Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in many cellular processes by bridging the plasma membrane and cytoskeleton. Their F-BAR domains bind and curve membranes, whereas other domains, typically SH3 domains, are expected to provide cytoskeletal links. We tested this prevailing model of functional division in the founding member of the family, Cdc15, which is e...

متن کامل

Schizosaccharomyces pombe Pxl1 is a paxillin homologue that modulates Rho1 activity and participates in cytokinesis.

Schizosaccharomyces pombe Rho GTPases regulate actin cytoskeleton organization and cell integrity. We studied the fission yeast gene SPBC4F6.12 based on its ability to suppress the thermosensitivity of cdc42-1625 mutant strain. This gene, named pxl1(+), encodes a protein with three LIM domains that is similar to paxillin. Pxl1 does not interact with Cdc42 but it interacts with Rho1, and it nega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017